
SOME EXAMPLES OF NONCOMMUTATIVE PROJECTIVE CALABI-YAU

SCHEMES

YUKI MIZUNO

Abstract. In this article, we construct some examples of noncommutative projective Calabi-Yau
schemes by using noncommutative Segre products and quantum weighted hypersurfaces. We also
compare them with commutative Calabi-Yau varieties and examples in [14].

1. Introduction

Calabi-Yau varieties are very rich objects. They play an important role in mathematics and physics.
In noncommutative geometry, (skew) Calabi-Yau algebras are often treated as noncommutative ana-
logues of Calabi-Yau varieties. They have a deep relationship with quiver algebras ([10], [3]). Many
known Calabi-Yau algebras are constructed by them. They are also used to characterize Artin-Schelter
regular algebras ([25], [26]). In particular, a connected graded algebra A over a field k is Artin-Schelter
regular if and only if A is skew Calabi-Yau.

On the other hand, a triangulated subcategory of the derived category of a cubic fourfold in P5

which is obtained by some orthogonal decompositions has the 2-shift functor [2] as the Serre functor.
Moreover, the structure of Hochschild (co)homology is the same as that of a projective K3 surface
([15]). However, some of such categories are not obtained as the derived category of coherent sheaves
of a projective K3 surface. They are called noncommutative K3 surfaces.

Artin and Zhang constructed a framework of noncommutative projective schemes which are defined
from noncommutative graded algebras in [2]. In the framework, we can think of Artin-Schelter algebras
as noncommutative analogues of projective spaces, which are called quantum projective spaces. Our
objective is to produce examples of noncommutative projective Calabi-Yau schemes which are not
obtained from commutative ones. As the definition of noncommutative projective Calabi-Yau schemes,
we adopt the definition by Kanazawa ([14]). His definition is a direct generalization of the definition
of (commutative) Calabi-Yau varieties to noncommutative projective schemes. He also constructed
the first examples of noncommutative projective Calabi-Yau schemes as hypersurfaces of quantum
projective spaces which are not isomorphic to commutative ones. Recently, some of the examples play
an important role in noncommutative Donaldson-Thomas theory ([16], [17]).

In this paper, we construct new examples of noncommutative projective Calabi-Yau schemes by
using noncommutative Segre products and weighted projective hypersurfaces. We detail that below.
Many examples of Calabi-Yau varieties are known in algebraic geometry. Among them, it is well-known
that some of them are complete intersections in Segre embeddings of products of projective spaces.
Moreover, Reid gave a list of Calabi-Yau surfaces which are hypersurfaces in weighted projective
spaces ([24], [13]). In this paper, we construct noncommutative analogues of the 2 types of examples
of Calabi-Yau varieties. Although the methods by Kanazawa are efficient in our cases, we also need
different approaches. In order to construct the former case, we perform a more detailed analysis of
noncommutative projective schemes of Z2-graded algebras which are studied by Rompay ([33]). A
different approach to noncommutative Segre products is also studied in [11]. For the latter case, we
consider the quotients of weighted quantum polynomial rings. In commutative algebraic geometry, the
projective spectrum Proj(k[x0, · · · , xn]) of a weighted polynomial ring is not necessarily isomorphic
to qgr(k[x0, · · · , xn]), where qgr(k[x0, · · · , xn]) is the quotient category associated to k[x0, · · · , xn]
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constructed in [2]. However, qgr(k[x0, · · · , xn]) is thought of as a nonsingular model (see [28, Example
4.9]). We use this idea to construct other noncommutative projective Calabi-Yau schemes. In addition,
it should be noted local structures of noncommutative projective schemes of quotients of weighted
quantum polynomial rings are a little complicated. An analysis of the local structures was performed
by Smith ([28]). Moreover, we show these are described by using the notion of quasi-Veronese algebras
introduced by Mori ([20]). Those mentioned above are treated in Section 3.

We compare them with commutative projective Calabi-Yau varieties and the first examples in [14]
in Section 4. We focus on noncommutative projective Calabi-Yau schemes of dimensions 2 and 3 in
the section. We consider moduli spaces of point modules (closed points) of noncommutative schemes
obtained in Section 3. However, weighted quantum polynomial rings are not generated in degree 1. So,
the notion of point modules is not necessarily useful in this case. In this paper, we use the notion of
closed points and theories concerning them in [29], [30] and [21], etc. Moreover, we also use methods
in [22] and [23] to study simple modules of quantum affine spaces. A different approach to closed
points of weighted quantum polynomial rings is studied in [31]. The notion of point modules in [31]
corresponds to the notion of ordinary and thin points in [21]. We also show some of them are not
isomorphic to any of commutative Calabi-Yau schemes and the first examples in [14]. To show they
are not isomorphic, we also need Morita theory of noncommutative schemes in [5] (see also [2, Section
6]).

2. Preliminaries

Notation 2.1. In this article, k means an algebraically closed field of characteristic 0.
We suppose N contains 0.
Let A be a k-algebra, M be an A-bimodule and ψ, ϕ be algebra automorphisms of A. Then, we

denote the associated A-bimodule by ψMϕ, i.e. ψMϕ = M as k-modules and the new bimodule
structure is given by a ∗m ∗ b := ψ(a)mϕ(b) for all a, b ∈ A and all m ∈M .

Definition 2.2 ([2, Section 2]). For any connected right Noetherian graded k-algebra A =
⊕∞

i=0Ai,
we denote the category of graded right A-modules (resp. finitely generated graded right A-modules)
by Gr(A) (resp.gr(A)). We denote the shift functor by (−)(1) : Gr(A) → Gr(A),M 7→ M(1) :=
⊕M(1)i := ⊕Mi+1. When let M,N ∈ Gr(A), HomA(M,N) :=

⊕
n∈Z HomGr(A)(M,N(n)).

We also denote the subcategory of torsion modules in Gr(A) (resp.gr(A)) by Tor(A) (resp.tor(A)).
We denote the quotient category Gr(A)/Tor(A) (resp.gr(A)/tor(A)) by QGr(A) (resp.qgr(A)) and the
canonical projection by π : Gr(A) → QGr(A). π has a right adjoint functor ω. Let A := π(A). The
(general) projective scheme of A is defined as Proj(A) := (QgrA,A, s). We also define the (Noetherian)
projective scheme as proj(A) := (qgrA,A, s). Let X := proj(A). The global section of any object N
is H0(X,N ) = Homqgr(A)(A,N ). The cohomology is Hi(X,N ) := Extiqgr(A)(A,N ) for i > 0.

Definition 2.3 ([35, Section4], [32, Section 4]). Let A be a connected graded k-algebra and mA be
A≥1. Let M be a right graded A-module.

Then, we denote limn→∞ HomA(A/A≥n,M) by ΓmA
(M). By using this, we define a functor ΓmA

:
Gr(A) → Gr(A)(we call ΓmA

torsion functor). We denote the derived functor of ΓmA
by RΓmA

and
HiRΓmA

by Hi
mA

. Note that if A is generated in degree 1, ΓmA
= {m ∈ M | mn

Am = 0 for some n ∈
N}.

Definition 2.4 ([35, Definition 3.3, 4.1], [32, Definition 6.1, 6.2]). Let A be a right and left Noetherian
connected graded k-algebra and A◦, Ae be the opposite algebra and the enveloping algebra of A,
respectively. Let R be an object of Db(Ae). Then, R is called a dualizing complex of A if (1) R
has a finite injective dimension over A and A◦, (2) The cohomology of R is finitely generated as
both A and A◦-modules, (3) The natural morphism A→ RHomA(R,R) and A→ RHomA◦(R,R) are
isomorphisms Db(Ae).

Moreover, R is called balanced if RΓmA
(R) ' A′ and RΓmA◦ (R) ' A′, where A′ is the Matlis dual

of A.
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3. Calabi-Yau conditions

Definition 3.1 ([14, Section 2.2]). Let A be a connected right Noetherian graded k-algebra. Then,
proj(A) is a projective Calabi-Yau n scheme if its global dimension is n and the Serre functor of the
derived category Db(qgr(A)) is the n-shift functor [n].

3.1. Z2-graded algebras and Segre products. In commutative algebraic geometry, when let X be
the Segre embedding of Pn × Pm into Pnm+n+m, a smooth complete intersection Y ⊂ X of bidegrees
(n+ 1, 0) and (0,m+ 1) provides a Calabi-Yau variety. In this section, we construct noncommutative
analogues of this example.

Let C be a connected N2-graded k-algebra. We denote the category of bigraded right C-modules
(resp. finitely generated bigraded right C-modules) by BiGr(C) (resp.bigr(C)). Let M be a Z2-
graded right C-module. If M(≥s,≥s) :=

⊕
i≥s,j≥sMij = 0 for s � 0, then we say M is a torsion

C-module. We denote the category of Z2-graded torsion C-modules by Tor(C). We also define tor(C)
to be the intersection of bigr(C) and Tor(C). So, we can construct the quotient category QBiGr(C) :=
BiGr(C)/Tor(C) (resp.qbigr(C) := bigr(C)/tor(C)) (cf. [33, Section 2]). We also denote the projection
functor by π and its right adjoint functor by ω. We can define the projective scheme proj(C) associated
to C and the notion of Calabi-Yau projective schemes as in the case of N-graded algebra.

Moreover, we define C++ := C(>0,>0) and the torsion functor ΓC++
for a N2-graded k-algebra C to

be the map which sends M to {m ∈M |(C>n,>n)m = 0 for some n ∈ N}.
We also denote the maximal ideal of C by mC and define the notion of dualizing complexes of C in

the same way as in Section 2. Note that we define another torsion functor Γmc
to be the map which

sends M to {m ∈ M | C>nm = 0 for some n ∈ N}, where C>n := {c ∈ C | the total degree of c > n}.
See [25, Section 3] for details of ΓmC

.
In this section, we prove the following theorem.

Theorem 3.2. Let A := k〈x0, · · · , xn〉/(xjxi − qjixixj)i,j, B := k〈y0, · · · , ym〉/(yjyi − q′jiyiyj)i,j and

C := A ⊗k B, where qij , q
′
ij ∈ k×. Let f :=

∑n
i=0 x

n+1
i and g :=

∑m
i=0 y

m+1
i be two bihomogeneous

polynomials of degree (n + 1, 0), (0,m + 1), respectively. We assume that (i) qii = 1, qijqji = 1 and

qn+1
ij = 1, (ii) q′ii = 1, q′ijq

′
ji = 1 and q′m+1

ij = 1.

Then, proj(C/(f, g)) is a Calabi-Yau projective (n + m − 2) scheme if and only if
∏n
i=0 qij and∏m

i=0 q
′
ij are independent of j, respectively.

Note that f, g are central elements because of the choice of {qij}, {q′ij}. To prove the theorem, we
need to show some lemmas.

Lemma 3.3. Let R := π(RΓC/(f,g)++
(C/(f, g))∗) and R′ := π(RΓmC/(f,g)

(C/(f, g))∗). Then, the

functors −⊗L R and −⊗L R′[−1] between tail(C/(f, g)) and itself are natural isomorphic.

Proof. First, let I1, I2 be the ideals generated by mA/(f),mB/(g) respectively. Then, we have
C/(f, g)++ = I1 ∩ I2 and mC/(f,g) = I1 + I2 and have the following long exact sequence in BiGr(Ce)

· · · → Hi
mC/(f,g)

(C/(f, g)) → Hi
I1(C/(f, g))⊕Hi

I2(C/(f, g)) → Hi
C/(f,g)++

(C/(f, g)) → · · ·

by using the Mayer-Vietris sequence, where ΓIk is defined not by using degree of Ik but by using
powers of Ik (i.e., ΓIk(M) := {m ∈ M | Inkm = 0 for some n}). Note that we can use the Mayer-
Vietris sequence in our case (see Remark 3.4 below). We also have the exact triangle

RΓmC/(f,g)
(C/(f, g)) → RΓI1(C/(f, g))⊕ RΓI2(C/(f, g)) → RΓC/(f,g)++

(C/(f, g)).

This is obtained from the equivalences for i = 0 in Remark 3.4. Moreover, we have Hi
I1
(C/(f, g))∗

and Hi
I2
(C/(f, g))∗ are torsion modules for C/(f, g)++ from Sub-Lemma 3.5. So, the cohomologies of

RΓI1(C/(f, g))
∗ ⊕RΓI2(C/(f, g))

∗ are torsion. Combining this with the above triangle, we obtain the
claim.

□
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Remark 3.4. To use the Mayer-Vietris sequence, we need to prove the following equivalences

lim
n→∞

ExtiC/(f,g)((C/(f, g))/(I1
n + I2

n),−) and Hi
I1+I2(−),

lim
n→∞

ExtiC/(f,g)((C/(f, g))/I
n
1 ⊕ (C/(f, g))/In2 ,−) and Hi

I1(−)⊕Hi
I2(−),

lim
n→∞

ExtiC/(f,g)((C/(f, g))/(I
n
1 ∩ In2 ),−) and Hi

I1∩I2(−).

In the commutative ring theory, these equivalences are proved by using cofinality and the Artin-Rees
Lemma (cf. [4, Chapter 3] or [9, Chapter A1D]). In general, an ideal of a noncommutative ring does
not satisfy the Artin-Rees Lemma. However, I1, I2 satisfy the Artin-Rees property in the sense of [18,
Chapter 4.2] because I1, I2 are generated by normal elements in our case. Thanks to this fact, we
prove the above equivalences in the same way as in the case of commutative rings.

Sub-Lemma 3.5. Let I1, I2 be as in the proof of Lemma 3.3. Hi
I1
(C/(f, g))∗ and Hi

I2
(C/(f, g))∗ are

torsion modules for C/(f, g)++ for any i.

Proof. We show that Hi
I1
(C/(f, g))∗ are torsion modules for C/(f, g)++. First, we have ΓI1 = ΓIn+1

1
.

Moreover, if let J1 be the ideal generated by xn+1
0 , · · · , xn+1

n , then the we have ΓIn+1
1

= ΓJ1 . So, it

is enough to consider ΓJ1 . Note that xn+1
0 , · · · , xn+1

n are central elements from the choice of {qij}.
Moreover, we have a surjective localization map N → N [x

−(n+1)
i ] for any xn+1

i and any right injective
C/(f, g)-module N . We also have ΓJ1(M) is an injective module for any C/(f, g)-module M because
J1 satisfies Artin-Rees property (see also the proof of Lemma 3.7). Thus, we can calculate the local
cohomology for J1 by using Čech complexes C (xn+1

0 , · · · , xn+1
n ;C/(f, g)) (cf. [9, Theorem A1.3],

[19]). Then, we also have C (xn+1
0 , · · · , xn+1

n ;C/(f, g)) = C (xn+1
0 , · · · , xn+1

n ;A/(f)) ⊗k B/(g). This
induces that Hi

I1
(C/(f, g)) = Hi

J1
(C/(f, g)) = Hi

mA
(A/(f)) ⊗k B/(g). Because Hi

mA
(A/(f))>0 = 0,

Hi
I1
(C/(f, g))∗ is torsion for C/(f, g)++.

□
Lemma 3.6. gl.dim(qgr(C/(f, g))) = n+m− 2.

Proof. We consider a bigraded (commutative) algebra E :=
k[s0, · · · , sn, t0, · · · , tm]/(

∑n
i=0 si,

∑m
i=0 ti)) and the projective spectrum biProj(E) in the

sense of [12, Section 1]. Then, an object in qbigr(C/(f, g)) can be thought of as an ob-
ject in the category of modules over the sheaf A of algebras, where A is the sheaf as-
sociated to algebras (k[x0, · · · , xn, y0, · · · , ym]/(f, g)xiyj )(0,0) for each open affine scheme
D+(sitj) ' Spec((Esitj )(0,0)). Hence, it is enough to prove that the global dimension of
(k[x0, · · · , xn, y0, · · · , ym]/(f, g)xiyj )(0,0) = n+m− 2.

In our case, we can complete the rest of the proof in the same way as in [14, Section 2.3]. We
give its sketch. For simplicity, we prove it when i = j = 0. Let Si := si/s0, Ti := ti/t0, Xi :=
xi/x0, Yi := yi/y0. Then we consider the k[S1, · · · , Sn, T1, · · · , Tm]/(1 +

∑n
i=1 Si, 1 +

∑m
i=0 Ti)-

algebra k〈X1, · · · , Xn, Y1, · · · , Ym〉/(XiXj−(q0iqijqj0)XjXi, YiYj−(q′0iq
′
ijq

′
j0)YjYi, 1+

∑n
i=1X

n+1
i , 1+∑m

i=1 Y
m+1
i ), where the module structure is given by the identification Si = Xn+1

i , Ti = Y m+1
i . We

denote the former by E and the latter by F . It is enough to prove that the global dimension of
localization Fm of F at any maximal ideal m̃ := (S1 − a1, · · · , Sn − an, T1 − b1, · · · , Tm − bm) of E
with 1 +

∑n
i=1 ai = 0, 1 +

∑m
i=0 bi = 0 is n+m− 2 ([14, Lemma 2.7]).

If any ai, bi is not 0, then F/m̃ is a twisted group ring and hence semisimple. Moreover, S1 −
a1, · · · , Sn − an, T1 − b1, · · · , Tm − bm is a regular sequence in Fm̃. This induces the claim ([18,
Theorem 7.3.7]). On the other hand, we assume that one of {a1, · · · , an, b1, · · · , bm} is 0. For example,
we assume a1 = 0. Then, we consider E/X1. We repeat taking quotients and reduce to considering the
global dimensions of the algebras k[X,Y ]/(Xn+1+1, Y m+1+1), which are 0 ([18, Theorem 7.3.5]). □
Proof of Theorem 3.2. First, we calculate RΓmC/(f,g)

(C/(f, g))∗. From [14, Proposition 2.4] (or [26,

Example 5.5]) and the proof of [26, Lemma 6.1], we have

RΓmC
(C))∗ ' RΓmA

(A)∗ ⊗ RΓmB
(B)∗ ' ϕA1(−n− 1)⊗ ψB1(−m− 1)[n+m+ 2],
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where ϕ(resp. ψ) is the graded automorphism of A(resp. B) which maps xj 7→
∏
qjixj (resp. yj 7→∏

qjiyj). Then, we consider the distinguished triangle

RΓmC
(C(−n− 1, 0))

×f−→ RΓmC
(C) −→ RΓmC/(f)

(C/(f)),

RΓmC/(f)
((C/(f))(0,−m− 1))

×g−→ RΓmC/(f)
(C/(f)) −→ RΓmC/(f,g)(C/(f, g))

obtained from the exact sequences of C-bimodules

0 −→ C(−n− 1, 0)
×f−→ C −→ C/(f) −→ 0,

0 −→ (C/(f))(0,−m− 1)
×g−→ C/(f) −→ C/(f, g) −→ 0.

Note that {f, g} is a regular sequence in C. Hence, we have

RΓmC/(f,g)
(C/(f, g))∗ ' ϕ(A/(f))1 ⊗k ψ(B/(g))1[n+m].

In addition, we have the Serre duality in Db(qbigr(C/(f, g))) from Lemma 3.7 (we prove this below).
Thus, − ⊗L π(RΓC/(f,g)++

(C/(f, g))∗)[−1] induces the Serre functor in Db(qbigr(C/(f, g))). Finally,

from the above formula and Lemma 3.3, the Serre functor −⊗L π(RΓC/(f,g)++
(C/(f, g))∗)[−1] induces

the [n+m− 2]-shift functor if and only if
∏n
i=0 qij and

∏m
i=0 q

′
ij is independent of j (cf. [14, Remark

2.5]). This completes the proof.
□

Lemma 3.7 (Local Duality and Serre Duality). Let D := C or C/(f, g). We have the following.

(1) Let M ∈ Db(bigr(D)). Let Q = ω ◦ π. Then, we have

RQ(M) ' RHomD(M,RQ(D)′)

in Db(bigr(D)).
(2) Let D := π(D), M := π(M) and RD := π(RΓD++

(D)′) ∈ Db(qbigr(D)). Then, we have

Extiqbigr(D)(N ,M)∗ ' Ext−iqbigr(D)(M, (N ⊗L RD)[−1]).

Moreover, the functor (−⊗L RD)[−1] induces an autoequivalence of Db(qbigr(D/(f, g))).

Proof. To prove (1), we want to apply [34, Theorem 0.4]. So, we show that the torsion class defined by
Q is quasi-compact, finite dimensional and stable (about the definition, see [34, Definition 3.4]). We
prove that the torsion class is stable. First, we prove the torsion class defined by D++ is stable. D++

is generated by normal elements {xiyj}. So, D++ has Artin-Rees property in the sense of [18, Chapter
4.2]. Thanks to this property, we apply the proof of [9, Lemma A1.4]. This shows the stability of the
torsion class defined by D++. On the other hand, we have the canonical exact sequence

0 → ΓD++
(I) → I → Q(I) → lim

nto∞
Ext1(D/Dn

++, I) → 0.

When I is injective, we have Q(I) is also injective from the stability of ΓD++ . This shows the stability
of the torsion class defined by Q.

Let l := lcm(n+1,m+1). Then, D++ and Dl
++ define the same torsion class. Moreover, if let D′ is

the ideal generated by {xliylj}i,j , then D′ also gives the same torsion class. Thus, we can calculate the

local cohomology for D′ by using Čech complexes as in Sub-Lemma 3.5. This shows that the torsion
class defined by D++ is quasi-compact and finite. For, the torsion class defined by Q, we can show the
quasi-compactness and finiteness from the above exact sequence and the isomorphism

RiQ(−) ' Ri+1ΓD++(−), i ≥ 1.

Hence, we can apply [34, Theorem 0.4]. Finally, we obtain the claim by taking dual.
About (2), we can prove the first statement in the same way as in [8, Theorem A.4] by using (1).

The second statement follows from that RΓD++
(D)′ is isomorphic to a shift of an invertible bimodule

of D in D(qbigr(D)). □
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As a corollary of Theorem 3.2, we construct examples of noncommutative projective Calabi-Yau
schemes by taking Segre products.

Definition 3.8. (1) The Segre product A◦B of A and B is the N-graded k-algebra with (A◦B)i =
Ai ⊗k Bi.

(2) Let M ∈ bigr(C) . We define a right graded A ◦ B-module M∆ as the graded A ◦ B-module
with (M∆)i =Mii.

Lemma 3.9 ([33, Theorem 2.4]). We have the following natural isomorphism

qbigr(C) // qgr(A ◦B), π(M) � // π(M∆).

In addition, the functor defined by −⊗A◦B C is the inverse of this equivalence.

Remark 3.10. We similarly obtain an equivalence

qbigr(C/J) ' qgr(A ◦B/J∆),
where J := (f, g) ∈ bigr(C).

Combining Theorem 3.2 with Remark 3.10, we get the following.

Corollary 3.11. Let J := (f, g) ∈ bigr(C). Then, proj(A ◦B/J∆) is a projective Calabi-Yau scheme.

3.2. Weighted hypersurfaces. Reid produced the list of all commutative weighted Calabi-Yau hy-
persurfaces of dimension 2 (for example, see [24], [13]). In this section, we construct noncommuta-
tive Calabi-Yau schemes from noncommutative weighted projective hypersurfaces. Let A be a con-
nected graded k-algebra. Then the Veronese subring B := A(r) is the connected graded k-algebra
B =

⊕
iBi :=

⊕
iArn. We consider the (commutative) weighted polynomial ring A = k[x0, · · · , xn]

with deg(xi) = ai. Then, Coh(proj(A)) is not equivalent to qgr(A), but to qgr(A(n+1)lcm(a0,··· ,an))).
However, we can think of qgr(A) as a resolution of Coh(Proj(A)) (cf. [28, Example 4.9]).

Theorem 3.12. Let w = (a0, · · · , an) ∈ Zn+1
>0 and d :=

∑
ai such that d is divisible by ai for

any i. Let C := k〈x0, · · · , xn〉/(xjxi − qjixixj)i,j be a quantum weighted polynomial ring, where

qij ∈ k×, deg(xi) = ai. Let f :=
∑
xhi
i , where hi := d/ai.

We assume that qii = 1, qijqji = 1 and qhi
ij = q

hj

ij = 1. Then, proj(C/(f)) is a projective Calabi-Yau

(n− 1) scheme if and only if there exists c ∈ k such that caj =
∏n
i=0 qij for all j.

Remark 3.13. Theorem 3.12 is a generalization of [14, Theorem 1.1].

Lemma 3.14. The balanced dualizing complex of C/(f) is isomorphic to ϕ(C/(f))1[n], where ϕ is a
graded automorphism of C which maps xi 7→

∏
qijxi.

Proof. Since C is Artin-Schelter regular, C is skew Calabi-Yau ([26, Lemma 1.2]). This induces that
the balanced dualizing complex of C is isomorphic to ϕC1(−d)[n + 1], where ϕ is the Nakayama
automorphism of C. So, we show that it is the map which maps xi 7→

∏
qijxi. We use the idea of [26,

Example 5.5]. When we think of C as a Zn+1-graded algebra, it is a Zn+1-graded twist (in the sense of
[36]) of the commutative weighted polynomial ring B = k[x0, · · · , xn] with (deg(x0), · · · , deg(xn)) =
((a0, 0, · · · , 0), · · · , (0, · · · , 0, an)) by σ = (σ0, · · · , σn), where

σi(xj) =

{
q
1/ai
ji xj i < j

xj i ≥ j
.

Note that the twisted algebra does not depend on the choice of q
1/ai
ji . Then, we use [26, Lemma 5.3,

Theorem 5.4] and have

ϕ = σa00 ◦ · · · ◦ σann ◦ ξ−1,

where ξ : B → B is the map which sends xi to qi+1iqi+2i · · · qnixi. Hence, ϕ is the map above. The
rest of the proof is done in the same way as in the proof of Theorem 3.2. □
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To prove the next lemma, we recall quasi-Veronese algebras. In detail, see [20, Section 3]. Let A be
a Z-graded ring. The k-th quasi-Veronese algebra A[k] of A is defined to be

A[k] :=
⊕
i∈Z


Aki Aki+1 · · · Aki+k−1

Aki−1 Aki · · · Aki+k−2

...
...

. . .
...

Aki−k+1 Aki−k+2 · Aki.

 .

Then, we have Gr(A) ' Gr(A[k])([20, Lemma 3.9]). The equivalence is obtained by the functor

Q : Gr(A) → Gr(A[k]), M 7→ ⊕i∈Z(⊕k−1
j=0Mki−j).

So, Q induces an equivalence between qgr(A) and qgr(A[k]).

Lemma 3.15. gl.dim(qgr(C/(f))) = n− 1.

Proof. We use the idea of the proof in Lemma 3.6 below. We consider a graded k-algebra D :=
k[s0, · · · , sn]/(

∑n
i=0 si). Let a = max{a0, · · · , an}. Note that (C/(f))[a] is generated in degree 1. So,

from the above, we can think of qgr(C/(f)) as the category of coherent modules over a sheaf A of
OD-algebra, where A is the sheaf defined by a tiled matrix algebra

Ni =


Ei,0 Ei,1 · · · Ei,a−1

Ei,−1 Ei,0 · · · Ei,a−2

...
... · · ·

...
Ei,−a+1 Ei,−a+2 · · · Ei,0


on each D+(si), where Ei := (C/(f))[x−1

i ] and Ei,l is the degree l part of Ni. In addition, R1 :=
Ei ⊕Ei(1)⊕ · · · ⊕Ei(a− 1) and R2 := Ei ⊕Ei(1)⊕ · · · ⊕Ei(ai − 1) are progenerators in Gr(Ei). So,
the categories of right Endgr(R1)-modules and right Endgr(R2)-modules are equivalent. We also have
Endgr(R1) ' Ni and

Endgr(R2) 'Mi :=


Ei,0 Ei,1 · · · Ei,ai−1

Ei,−1 Ei,0 · · · Ei,ai−2

...
... · · ·

...
Ei,−ai+1 Ei,−ai+2 · · · Ei,0

 .

So, it is enough to prove the global dimensions of Mi is n − 1 (cf. [28, Remark in page 2938]). For
simplicity, we assume i = 0. We show the global dimension of k[S1, · · · , Sn]/(1+

∑n
i=0 Si)-algebra M0

is n− 1. The module structure of M0 is given by the identification Si = (xhi
i /x

h0
0 )Ia0 , where Ia0 is the

(a0×a0)-identity matrix. Let m̃ = (S1−a1, · · ·Sn−an) be a maximal ideal of D with 1+
∑n
i=1 ai = 0.

We show gl.dim((M0)m̃) = n− 1
If all ai are not 0, then M0/m̃M0 is semisimple (note that this is equivalent to that the global

dimension ofM0/m̃M0 is 0). Actually, tha category of M0/m̃M0-modules is equivalent to the category

of graded E′
0 := E0/(x

h1
1 /xh0

0 − a1, · · · , xhn
n /xh0

0 − an)E0-modules. This is a Morita equivalence. We
also have E′

0 is a twisted group algebra obtained from a finitely generated abelian group of rank 1 when
we forget its grading. In addition, A finitely generated abelian group is a product of a free abelian
group and finite cyclic groups. These show that E′

0 is isomorphic to a skew Laurent polyonimal ring
R[t, t−1;σ], where R is a semisimple ring, σ ∈ Aut(R) and deg(t) > 0. This induces the graded global
dimension of E′

0 is 0. So, we get gl.dim(M0/m̃M0) = 0. Finally, S1 − a1, · · · , Sn − an is a regular
seuence in (M0)m̃ and this induces the claim.

Suppose some of ai are 0. For example, we assume a1 = 0. Then, (xh1
1 /xh0

0 )Ia0 is an annihilator
of any simple M0-module N . We have a unique integer r1 such that 0 ≤ deg(x1/x

r1
0 ) ≤ a0 − 1. If
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deg(x1/x
r1
0 ) = 0 then, J = x1/x

r1
0 Ia0 annihilates N . Otherwise, the matrix

J =



0 . . . . . . 0 x1/x
r1
0 0 . . . 0

0 . . . . . . 0 0 x1/x
r1
0 . . . 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 · · · · · · · · · · · · · · · 0 x1/x
r1
0

x1/x
r1+1
0 0 · · · 0 · · · · · · · · ·

.

.

.

0 x1/x
r1+1
0 · · · 0 · · · · · · · · ·

.

.

.

.

.

.
.
.
.

. . .
.
.
. · · · · · · · · ·

.

.

.

0 0 · · · x1/x
r1+1
0 · · · · · · · · · 0


annihilates N . So, it is enough to prove the global dimension of M0/JM0 = n − 2. Repeating this
process, we can reduce to considering the matrix algebra

M ′
i =


E′

0 E′
1 · · · E′

a0−1

E′
−1 E′

0 · · · E′
a0−2

...
... · · ·

...
E′

−a0+1 E′
−a0+2 · · · E′

0


, where E′ := (k〈x, y〉/(xy − qyx, xl1 + yl2))[x−1], (q ∈ k∗, l1deg(x) = l2deg(y)). The global dimension
of this algebra is 0 as above. Thus, we complete the proof. □

Proof of Theorem 3.12. The global dimension of qgr(C/(f)) is finite. So, the balanced dualizing com-
plex of (C/(f)) induces the Serre functor of qgr(C/(f)) from [8, Theorem A.4]. Considering that
the dualizing complex of qgr(C/(f)) is ϕ(C/(f))1, we complete the proof as in the proof of Theorem
3.2. □

4. Comparison and closed points

In this section, we calculate point modules (closed points) of noncommutative Calabi-Yau schemes
obtained in Section 3 and compare our examples with commutative Calabi-Yau schemes and noncom-
mutative Calabi-Yau projective schemes obtained in [14].

Definition 4.1 ([1, Definition 3.8], [27, Definition 3.1], [7]). Let A be a connected graded k-algebra
generated in degree 1. Let M be a graded right A-module. We say M is a point module if M is cyclic,
generated in degree 0 and dimk(Mi) = 1 for all i ≥ 0.

We mention some basic facts about point modules of connected graded k-algebras which are needed
in this section. For details, see [27, Section 3], [14, Section 3], etc.

Let A := k〈x0, · · · , xn〉 be a free associative algebra with (n+1)-variables. Then, the moduli space
MA of point modules of A is isomorphic to

∏∞
i=0 Pn. Let M :=

⊕
i kmi be a point module of A. If

mixj = αi,jmi+1(αi,j ∈ k∗), then we can describe the isomorphism between them as follows

MA →
∞∏
i=0

Pn, M 7→ {(αi,0, · · · , αi,n)}i∈N.

Let f :=
∑
axx ∈ A be a homogeneous element of degree d, where x means xi0xi1 · · ·xid−1

. Then, the

multilinearlization of f is an element fmulof the polynomial ring k[yij ] which is given by replacing x
by y0,i0y1,i1 · · · yd−1,id−1

. Let B := A/(f1, · · · , fm), where fi are homogeneous elements of degree di
respectively . Then, the moduli spaces MB of point modules of B is given by

MB = {{αi := (αi,0, · · · , αi,n)}i∈N ∈ MA | fmul
k (αl, · · · , αl+dk−1) = 0, 1 ≤ k ≤ m, 0 ≤ l} ⊂ MA.

(4.0.1)
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If B = k〈x0, · · · , xn〉/(xjxi − qjixixj) be a quantum polynomial ring with (n + 1)-variables, then we
have MB ⊂ Pn = Proj(k[x0,0, · · · , x0,n]) and

MB ∩ Ul =
∩

i,j,k ̸=l

Z((qijqjkqki − 1)titjtk) ∩
∩
i,j ̸=l

Z((qijqjlqli − 1)titj) ⊂ Ul (4.0.2)

on the standard open affines Ul = Spec(k[t0, · · · , t̂l, · · · , tn]) (t̂l means omit tl). We say {qij} is special
if qijqjkqki = 1 for any three relation {xixj − qijxjxi, xjxk − qjkxkxj , xkxi − qkixixk}. Otherwise, we
say {qij} is general (this definition is a little different from one in [14]).

4.1. Segre products. Here, we compute the moduli space MA◦B/J∆ of point modules of A ◦B/J∆,
where A ◦B/J∆ is N-graded connected k-algebra defined in Corollary 3.11.

In the above, point modules of N-graded algebras are defined. Similarly, we can define point modules
of N2-graded connected k-algebras. In particular, the moduli MA⊗kB of point modules on A ⊗k B
and the moduli MA◦B of point modules on A ◦B are isomorphic to the fiber product MA×MB (see,
Lemma 3.9 and [33, Corollary 2.10]). We also have an isomorphism between MA⊗B/J and MA◦B/J∆
from the commutativity of the following diagram

qbigr(A⊗k B) //

∪
qgr(A ◦B)

∪
qbigr(A⊗k B/J) // qgr(A ◦B/J∆).

⟳

In the following, we consider noncommutative Calabi-Yau projective 3 schemes obtained from A⊗
B/J = k〈x0, x1, x2, x3, y0, y1, y2〉/(xjxi − qjixixj , ylyk − q′lkykyl, f, g)i,j,k,l.

Proposition 4.2. If {qij} is general, then dim(MA⊗kB/J ) = 1. Therefore, dim(MA◦B/J∆) = 1.

Proof. If {qij} is general, then MA is the 1-skeleton S of P3 (cf. the proof of [14, Proposition 3.4]).
Let Ui, Vi be standard open affines of Proj(k[x0,0, x0,1, x0,2, x0,3]) and Proj(k[y0,0, y0,1]), respectively.
If i = j = 0, then

MA⊗kB/J ∩ (Ui × Vj) = ((Ui ∩ S)× A1) ∩ Z(f̃mul),

where f̃mul is the polynomial obtained from the multilinearlization of f , dehomogenezation and elim-
inating the variables except for x0,i, y0,i. This argument holds for any i, j.

□

Proposition 4.3. There exists a noncommutatative projective Calabi-Yau 3 scheme which is not
isomorphic to any commmutative Calabi-Yau 3 variety.

Proof. For example, we consider the noncommutatative Calabi-Yau 3 scheme in Theorem 3.2 defined
by the quantum parameters

q = (qij) =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , q′ = (q′ij) =

1 1 1
1 1 1
1 1 1

 . (4.1.1)

Then, qbigr(A⊗kB/J) ' qgr(A◦B/(J∆)) is equivalent to the category of coherent modules of a sheaf
A of algebras on X = biProj(k[s0, s1, s2, s3, t0, t1, t2]/(s0 + s1 + s2 + s3, t0 + t1 + t2)) (cf. the proof of
Lemma 3.6). Moreover, we define a sheaf ZA to be the sheaf

Γ(U,ZA) = {s ∈ Γ(U,A) | s|V ∈ Z(Γ(V,A)), ∀V ⊂ U : open}
for all U (cf.[5, Proposition 2.11]). In particular, if U is affine, then Γ(U,ZA) = Z(Γ(U,A)). Let
ϕ : Spec(ZA) → X be the natural morphism. Then, note that qgr(A ◦ B/(f, g)) is equivalent to the
category of coherent modules of a sheaf ϕ−1A of algebra on Spec(ZA). LetW be a commutative Calabi-
Yau scheme. If qgr(A ◦ B/(f, g)) is equivalent to Coh(W ), then we have an isomorphism of schemes
between Spec(ZA) andW by [5, Theorem 4.4] (see also [2, Section 6]). However, Spec(ZA) ' X ′

1×kX ′
2,
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where X ′
1 ' Proj(k[s′0, s

′
1, s

′
2, s

′
3]/(s

′
0
2
+ s′1

2
+ s′2

2
+ s′3

2
) and X ′

2 ' Proj(k[t′0, t
′
1, t

′
2]/(t

′
0
3
+ t′1

3
+ t′2

3
)).

This is because we have Z(Γ(D+(sk), Ã)) ' k[u1, u2, u3]/(1 + u21 + u22 + u23) and Z(Γ(D+(tl), B̃)) '
k[v1, v2]/(1 + v31 + v32) for any k and l. For example, note that when k = 0, we have Γ(D+(s0), Ã) '
k〈X1, X2, X3〉/(XiXj − q′′ijXjXi, 1 + X4

1 + X4
2 + X4

3 ), where Ã is the sheaf associated to A on
Proj(k[s0, s1, s2, s3]/(s0 + s1 + s2 + s3)) and

q′′ = (q′′ij) = (q0iqijqj0) =

 1 −1 −1
−1 1 −1
−1 −1 1

 .

This completes the proof. □
Remark 4.4. (1) In [14], the author constructs a noncommutative projective Calabi-Yau 3 scheme

W whose moduli of point modules is finite points. We show that these noncommutative
schemes are not isomorphic to the above one.

Proof : From Proposition 4.2, A◦B/(J∆) has infinite point modules. We suppose that W =
proj(k〈w0, w1, w2, w3, w4〉/(wjwi−q′′jiwiwj , w5

0+w
5
1+w

5
2+w

5
3+w

5
4)). IfW and proj(A◦B/(J∆))

are isomorphic, then each simple object of degree 1 is sent to a simple object of degree 1. The
degree of a simple object M of a proj(A) is defined to be dimkHom(Oproj(A),M). Since

k〈w0, w1, w2, w3, w4〉/(wjwi− q′′jiwiwj , w5
0 +w

5
1 +w

5
2 +w

5
3 +w

5
4) and A ◦B/(J∆) are generated

in degree 1, any of their simple objects is given by a point module or a fat point module and
the degrees of fat point modules are greater than 1 (cf. [6, Remark 6], [21, Section 3]). This
induces a contradiction.

(2) When we consider A ⊗ B/(f) giving a projective Calabi-Yau 2 scheme, then the projective
scheme is a twist of a commutative Calabi-Yau surface.

4.2. Weighted hypersurfaces. Let C/(f) be the connected N-graded k-algebra defined in Theorem
3.12. In this subsection, we focus on noncommutative Calabi-Yau projective surfaces. So, we suppose
n = 3.

Example 4.5. Any weight (a0, a1, a2, a3) of noncommutative Calabi-Yau 2 schemes such that
gcd(a0, a1, a2, a3) = 1 is one of the following.

(a0, a1, a2, a3) = (1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 4), (1, 1, 2, 5), (1, 1, 4, 6),

(1, 2, 3, 6), (1, 3, 3, 4), (2, 3, 3, 4), (1, 2, 6, 9), (2, 3, 10, 15), (1, 6, 14, 21).

4.2.1. Closed points of weighted hypersurfaces. In the rest of this subsection, we focus on the closed
points of noncommutatative projective Calabi-Yau surfaces in Theorem 3.12 whose weights are of type
(1, 1, a, b) (cf. Example 4.5). We recall the notion of closed points of noncommutative projective
schemes.

Definition 4.6 ([21, Definition 3.4], [29, Section 3.4]). Let A be a finitely generated connected right
Noetherian graded k-algebra. A closed point of proj(A) is an object of qgr(A) represented by a 1-
critical modules of A. In particular, if A is a graded quotient of (weighted) quantum polynomial rings,
then every point is one of the following:

(1) An ordinary point, which is represented by a finitely generated 1-critical module of multiplicity
1.

(2) A fat point, which is represented by a finitely generated 1-critical module of multiplicity > 1.
(3) A thin point, which is represented by a finitely generated 1-critical module of multiplicity < 1.

Note that if A is generated in degree 1, the notion of ordinary points and the notion of point modules
are the same and there is no thin point. We denote | proj(A) | by the set of closed points of proj(A).

We consider ordinary and thin points of proj(C) = proj(k〈x0, x1, x2, x3〉/(xjxi − qjixixj)) whose

weight is of type (a0, a1, a2, a3) = (1, 1, a, b)(a ≤ b). Since a0 = 1, C[x−1
0 ] is strongly graded. So, from

[21, Theorem 4.20], we have

| proj(C) |=| spec(C[x−1
0 ]0) |

⊔
| proj(C/(x0)) |,
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where we denote | spec(C[x−1
0 ]0) | by the set of simple modules of C[x−1

0 ]0. In this equality, the 1-
dimensional simple modules of spec(C[x−1

0 ]0) correspond to ordinary points and the n(> 1)-dimensional
simple modules of it correspond to fat points. Similarly, we have

| proj(C) | =| spec(C[x−1
0 ]0) |

⊔
| spec(C/(x0)[x−1

1 ]0) |
⊔

| proj(C/(x0, x1)) | .

Since C[x−1
0 ]0 is a quantum polynomial ring generated by xi/x

ai
0 , C[x−1

0 ]0 is isomorphic to a quantum
polynomial ring k〈y1, y2, y3〉/(yjyi − q′jiyiyj), where q

′
ji = qai0jqjiq

aj
i0 . We also have C/(x0)[x

−1
1 ]0 is

isomorphic to k〈z2, z3〉/(z3z2 − qa213q32q
a3
21z2z3). In addition, C/(x0, x1) = k〈x2, x3〉/(x3x2 − q32x2x3)

and it is known that a quantum weighted polynomial ring of 2 variables is some twisted algebra of
the commutative weighted polynomial ring k[x, y] with deg(x) = a, deg(y) = b (for example, see [31,
Example 4.1] or [36, Example 3.6]). So, it is enough to consider the closed points of k[x, y] as for
proj(C/(x0, x1)).

Lemma 4.7. Let C1 := C[x−1
0 ]0 and C2 := C/(x0)[x

−1
1 ]0. Then, we have a natural bijection between

the set | C1 |1of 1-dimensional simple modules of C1 and A3 if q′ji = qai0jqjiq
aj
i0 = 1 for all i, j. We

also have a natural bijection between the set | C2 |1 of 1-dimensional simple modules of C2 and A2 if
qa213q32q

a3
21 = 1.

Proof. The second half of the statements is well-known (for example, see [29, Section 4.3]). We show
the first half of the statements.

From [22, Theorem A, B], we hava a surjective map from A3 to the set of all simple modules of C1.
Then, each element of (k∗)3 ⊂ A3 is sent to a simple module of dimension h := (PI-deg(C1))

2, where

PI-deg(C1) means the PI degree of C1. we can write q′ij as q
′hij , where q′ is a primitive d-th root and

hij ∈ Z. Then, h is the cardinality of the image of the homomorphism

Z3 (hij)→ Z3 p→ (Z/dZ)3,
where p is the natural projection ([22, Proposition 2.3]). It is easy to see that h = 1 if and only if
q′ij = 1 for all i, j. So, if q′ij = 1, then any simple module of C1 is isomorphic to a simple module of the

form C1/(y1 − b1, y2 − b2, y3 − b3) for some b1, b2, b3 ∈ k. We also have C1/(y1 − b1, y2 − b2, y3 − b3) ≇
C1/(y1 − b′1, y2 − b′2, y3 − b′3) if (b1, b2, b3) 6= (b′1, b

′
2, b

′
3). Thus, we have the claim. □

We mention the closed points of proj(k[x, y]) (we use proj in the sense of Definition 2.2)
with deg(x) = a, deg(y) = b such that (a, b) = (2, 2), (2, 4) or (4, 6). Note that when (a, b) =
(1, 1), (1, 3) or (2, 5), the closed points of proj(k[x, y]) is classified in [21, Theorem 3.16].

Lemma 4.8. Let (a, b) and R = k[x, y] be as above. Let g := gcd(a, b), a′ := a/g and b′ := b/g. Then,
every closed point of proj(R) is one of the following:

(1) πR/(x)(−i), i = 0, · · · , b− 1.
(2) πR/(y)(−j), j = 0, · · · , a− 1.

(3) πR/(βxb
′ − αya

′
)(−k), where α, β ∈ k∗ and k = 0, · · · , g − 1.

Moreover, all of them are not isomorphic in proj(R). Any point of proj(R) is thin if g > 1.

Proof. The proof is almost the same as the proof of [21, Lemma 3.15, Theorem 3.16]. We give the
sketch of the proof. Firstly, every closed point of proj(R) is represented by a cyclic critical Cohen-
Macaulay module of depth 1. Then, M ∈ gr(R) satisfies these and is generated in degree 0 if and only

if M is isomorphic to one of R/(x), R/(y) or R/(βxb
′ − αya

′
) (α, β ∈ k∗). Since being cyclic critical

Cohen-Macaulay of depth 1 is invariant under shifting, any closed point is represented by some shifts
of one of the above modules (that is, R/(x)(−l), R/(y)(−l), R/(βxb′ − αya

′
)(−l), l ∈ Z). Finally,

we classify the isomorphic classes of these modules in proj(R). In detail, we have no isomorphisms
between the three types of closed points by using their Hilbert polynomial and multiplicity except
in the case of a = b. Then, we can show πR/(βxb

′ − αya
′
) ' πR/(βxb

′ − αya
′
)(−gl), l ∈ Z and

πR/(βxb
′ − αya

′
) ' πR/(β′xb

′ − α′ya
′
) if and only if (α, β) = (α′, β′). In addition, we can show that

πR/(x) ' πR/(x)(−i) (resp. πR/(y) ' πR/(y)(−j)) if and only if i ≡ 0 (mod b) (resp. j ≡ 0 (mod a)).
From these, we get the claim. □



12 YUKI MIZUNO

We study ordinary (and thin) points of weighted hypersurfaces by using the above investigation.
In particular, we give examples of noncommutative projective Calabi-Yau schemes whose moduli of
ordinary closed points are different from those in [14, Proposition 3.4] and commutative projective
Calabi-Yau schemes.

Example 4.9. We consider the weight (1, 1, 2, 2) and the quantum parameter

q = (qij) =


1 1 1 ω2

1 1 ω2 1
1 ω 1 1
ω 1 1 1

 , η :=
−1 + i

√
3

2
.

Then, we have

q′ = (q′ij) =

 1 ω2 ω
ω 1 ω2

ω2 ω 1

 , qa213q32q
a3
21 = ω2.

This means that three out of x0, x1, x2, x3 are annihilators of M for any 1-critical module M of C.
Since the ordinary or thin points are

| proj(C) |ord & thin=| spec(C[x−1
0 ]0) |1

⊔
| spec(C/(x0)[x−1

1 ]0) |1
⊔

| proj(C/(x0, x1)) |,

the | proj(C/(f)) |ord & thin is 24 points. To be more precise, we have | spec((C/(f))[x−1
0 ]0) |1=

ti ̸=jZ(yi, yj , 1 + y61 + y32 + y33) ⊂ A3, | spec(C/(f, x0)[x
−1
1 ]0) |1=

⊔
i=1,2 Z(zi, 1 + z32 + z33) and |

proj(C/(f, x0, x1)) |= {3pts} t {3pts} ⊂ A1 t A1.

From Example 4.9 and a direct computation, we have the following proposition.

Proposition 4.10. For a weight (1, 1, a, b) in Example 4.5 and a quantum parameter q which gives a
projective Calabi-Yau scheme, if the set of ordinary and thin points of proj(C/(f)) is finite, then the
number of the set is always 24.

The following proposition shows that some of noncommutative Calabi-Yau surfaces in Theorem 3.12
are new examples.

Proposition 4.11. There exists a noncommutative Calabi-Yau projective surface which is obtained
in Theorem 3.12 and not isomorphic to either commutative Calabi-Yau surfaces or noncommutative
projective Calabi-Yau surfaces obtained in [14].

Proof. For example, we choose the weight (1, 1, a, b) and the quantum parameter q as in Example 4.9.
Then, the number of ordinary and thin points of proj(C/(f)) is finite. So, we can show that proj(C/f)
is not isomorphic to any commutative Calabi-Yau surfaces as in Remark 4.4.

We prove that proj(C/(f)) is not isomorphic to any noncommutative Calabi-Yau surfaces in [14]
by using the method of the proof of Proposition 4.3. First, note that we can think of proj(C/f) is
the category of coherent modules of a sheaf A of algebras on Proj(k[s0, s1, s2, s3]/(s0 + s1 + s2 + s3))
(cf. Lemma 3.15). Then, a direct computation shows Spec(ZA) has a singular point. In detail,
Spec(Z(Γ(D+(si),A))) is smooth when i = 0, 1 and not smooth when i = 2, 3.

We consider the weight (1, 1, 1, 1) and take a quantum parameter which gives a noncommutative
Calabi-Yau surface whose moduli space of point modules is finite points. Then, the corresponding
noncommutative scheme is also thought of as the category of coherent modules of a sheaf B of algebras
on Proj(k[t0, t1, t2, t3]/(t0 + t1 + t2 + t3)). In addition, Spec(ZB) is the projective plane or a smooth
quadric hypersurface. This completes the proof. □
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